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I N T R O D U C T I O N 

�OVERVIEW: WHY BUILDING REUSE FOR CLIMATE ACTION?

The purpose of this guide is to provide practical information to help architects involved with the 
renovation and adaptive reuse of existing buildings make smart choices that have the greatest 
positive impact at the least cost. It helps architects ask the right questions, links them to useful 
resources, and provides case studies that illustrate these ideas in action. 

The renovation and transformation of existing buildings is a significant part of the business of 
architecture and also a significant opportunity for architects to address climate change. By floor 
area, about half of the U.S. building stock is over 40 years old, and over 50% of billings by AIA 
membership are for renovation and reuse projects. Moreover, about 65% of the projected U.S. 
building stock (in floor area) in 2050 will be buildings that were already standing in 2022. 

As former AIA President Carl Elefante observed, “There is no pathway to a zero-emissions building 
sector without zeroing out emissions from America’s 325 billion square feet of existing buildings.” 

In 2022, the fuel and electricity consumed by existing buildings were responsible for an 
estimated 28% of global emissions. Building construction (including the manufacturing of the 
steel, concrete, glass, and other materials that go into buildings) is responsible for another 9% 
of global emissions—this is sometimes referred to as “embodied carbon.” Because the emissions 
associated with constructing a new building are typically significantly greater than the emissions 
to renovate one, renovating, rather than demolishing and replacing, existing buildings can be a 
carbon-smart approach to decarbonizing existing building stock. The good news captured in this 
guide is that reused and renovated buildings can be transformed into low- and zero-emissions 
buildings, achieving energy performance comparable to that of new construction—at a fraction of 
the embodied carbon.
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https://new.aia.org/articles/6502007-renovation-claims-50-share-of-firm-billing?tools=true
https://new.aia.org/articles/6502007-renovation-claims-50-share-of-firm-billing?tools=true
https://www.aceee.org/blog-post/2023/04/energy-department-can-help-cities-and-states-steer-existing-buildings-net-zero
https://www.buildinggreen.com/feature/we-must-decarbonize-existing-buildings-2050-how
https://globalabc.org/our-work/tracking-progress-global-status-report
https://globalabc.org/our-work/tracking-progress-global-status-report
https://globalabc.org/our-work/tracking-progress-global-status-report
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Therefore, building reuse and renovation is an essential part of climate mitigation—slowing the 
emissions driving climate change. But climate change is already underway, with extreme heat 
events, more severe storms, and more frequent wildfires already impacting air quality and daily 
life across the world. Even with everyone’s best efforts, these impacts are likely to get worse 
before they get better. So, if we are investing in reusing existing buildings, we need them to 
be designed to handle these new conditions—they have to be designed for climate adaptation. 
Building reuse provides an opportunity to improve resilience. As discussed in subsequent sections 
of this guide, improved insulation can reduce occupant vulnerability to extreme heat or cold 
during power outages; roofing, windows, or glazing can be strengthened to withstand more 
severe storms; and heating, cooling, and ventilation equipment can be specified with filtration to 
deal with particulate-laden smoke from distant wildfires.

Finally, building reuse can help improve both public health and social equity. In both urban and 
rural communities, low-income residents and communities of color often live in substandard older 
buildings that may have inadequate ventilation and high utility bills. High energy burdens—the 
percentage of income that goes to energy bills—plays a significant role in housing insecurity, 
where a few unexpectedly high bills in a row can lead to low-income residents losing their homes. 
According to the Department 
of Energy’s Low-Income Energy 
Affordability Data (LEAD) Tool, 
households across the U.S. with 
incomes below 30% of their 
state’s median income pay 18% of 
that income for electricity and gas.

In New Orleans, 23% of all 
households had incomes below 
30% of the area median, and these 
households spent an average of 23% of their income on electricity and gas for their residences. 
Transforming our existing building stock can support a transition to a healthier, more equitable 
society.All of this presents architects with a business opportunity to transform the existing 
building stock in ways that aid the transition to zero carbon emissions while promoting health, 
equity, and adaptation to the climate change impacts that are already here, as well as those that 
are coming. 

Households across the U.S. with 
incomes below 30% of their state’s 
median income pay 18% of that 
income for electricity and gas.

https://www.apha.org/-/media/Files/PDF/topics/climate/Guide_Section1.ashx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222490/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222490/
https://www.energy.gov/scep/slsc/lead-tool
https://www.energy.gov/scep/slsc/lead-tool
https://www.housingnola.org/wp-content/uploads/2022/10/2022-Housing-For-All-Action-Plan-9-14-Interactive.pdf
https://www.housingnola.org/wp-content/uploads/2022/10/2022-Housing-For-All-Action-Plan-9-14-Interactive.pdf
https://www.housingnola.org/wp-content/uploads/2022/10/2022-Housing-For-All-Action-Plan-9-14-Interactive.pdf
https://www.housingnola.org/wp-content/uploads/2022/10/2022-Housing-For-All-Action-Plan-9-14-Interactive.pdf
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G U I D E  BY  B U I L D I N G  C O M P O N E N T

SITE

Although the site has already been selected in a building reuse project, the changing climate 
requires us to take a fresh look at site conditions today and those anticipated for the next few 
decades. It’s also a good opportunity to explore ways to improve the performance of the site 
landscape and hardscape. 

OPPORTUNITIES

•	 �What are the predicted climate projections for the site, such as changes in temperature and 
precipitation patterns, sea-level rise, or more frequent and intense extreme weather events?  
Tools such as The Climate Explorer or the National Climate Assessment can help.

•	 �What are the potential climate change risks associated with the site, such as flooding, extreme 
heat, or wildfires? How resilient is the site to extreme weather events?

•	 �Is the site located in a flood-prone area? If so, what measures can be taken to mitigate the risk  
of flooding?

•	 �Can the building be elevated above potential flood levels or incorporate flood-resistant design 
features, such as watertight barriers or flood vents?

•	 �How can landscaping and site drainage be designed to prevent water accumulation  
and flooding?

•	 �Is the site located in a wildfire-prone area? If so, how can the building design incorporate 
wildfire-resistant features, such as non-combustible materials, fire-rated windows and doors, 
and vegetation management?

•	 �Can landscaping be designed to create a defensible space around the building to minimize the 
risk of ignition from nearby wildfires?

•	 �What emergency response strategies can be incorporated to evacuate the building safely during  
an emergency?

•	 What is the likelihood and frequency of these risks occurring?

•	 What is the severity of the consequences of these risks occurring? 

Image credit: Jim Gage

https://crt-climate-explorer.nemac.org/
https://www.aia.org/pages/6474842-key-regional-climate-issues-a-guide-for-ar
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•	 �What ecosystems or habitats are on or surround the site? Are there any vulnerable or at-risk 
species? Do any provide natural resilience that could be mimicked or enhanced? What design 
strategies can be incorporated to enhance site resilience?

•	 �What elements of the Climate Positive Design Toolkit for low-carbon and carbon-sequestering 
landscape and hardscape design are appropriate for this project?

•	 How does water interact with the site? 

	> Is there a need for landscape irrigation? Can irrigation loads be reduced through native 
plantings or xeriscaping? 

	> Would water storage benefit the immediate landscape or relieve infrastructure in times of 
stress (like flooding or severe storm events?) Would water storage (retention ponds, cisterns, 
blue roof) benefit the building users and provide possible water reuse/indoor water use 
savings?

	> How can runoff be filtered and returned back to the local ecosystem cleaner?  
How can runoff be reduced?

	> How can the design reduce the use of impermeable surfaces?

	> How can permeable pavement and plantings be used to reduce runoff and increase 
percolation throughout the site. 

•	 �What public spaces or features can be incorporated to support community resilience, such as 
accessible and safe cooling centers or resilient infrastructure for emergency preparedness?

•	 �What is the solar exposure of the site and the building? Can introducing trees or shade 
structures extend outdoor comfort for more of the year or improve the energy performance of 
the building?

•	 �What types of renewable energy could be accommodated on-site? Determine on-site capacity 
to provide renewable energy (e.g., photovoltaic arrays, solar water heater, etc.).

	> On-site power generation can reduce a building’s reliance on fossil fuels and provide power 
during disaster and recovery. Look at the project site, parking, and rooftops to understand 
where a solar array could be placed.

	> �What infrastructure and transportation networks surround the site and/or could be 
supported and enhanced with site features?

Image credit: Mike Haupt

https://climatepositivedesign.com/
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BEST PRACTICES

The building site presents opportunities to manage the changing climate and contribute to 
community resilience. Excess water (e.g., inland flooding, sea-level rise, tsunamis, and increased 
rainfall), extreme drought, fire, and species migration (e.g., termites expanding their range) can be 
expected with the changing climate.

Most climate projections show, in addition to slowly rising average temperatures, a dramatic 
increase in weather extremes.  
Based on a site’s climate region, architects need to plan for chronic heat, severe cold, and 
increased freeze/thaw cycles as well as heavy precipitation events, drought, and wildfires/smoke. 
Increased extreme heat events can mean that an existing building that was previously able to 
provide comfort without air conditioning may need to consider it now. Simple, passive design 
strategies often considered in new construction when siting a project can be achieved through 
new plantings and landscaping. Our changing climate will also bring increased wind from more 
frequent and intense tornadoes and/or hurricanes. Plantings can be a buffer for wind, protecting 
the building, but they can also be a hazard during severe wind events, so all design strategies 
need to be appropriately considered. How can the project site adapt to new and existing 
challenges?

While it’s widely appreciated that adapting and reusing existing buildings helps avoid the carbon 
emissions associated with new structures and building envelopes, similar benefits come from 
siting projects on previously developed sites. Doing so allows reuse of the site infrastructure 
(roads, drainage, water lines, power lines) already in place. 

Where possible, replacing or augmenting conventional drainage systems with green infrastructure 
can offer multiple benefits, including handling more severe storm events without overloading  
existing drainage.

CHALLENGES

Making modifications to the site surrounding a building reuse project can often be difficult 
because conditions below grade are either unknown or costly to work around. 

Interventions at the scale of raising a building to a higher flood elevation can be quite costly, 
unfeasible for some building structural systems, or not allowed for certain historic structures. In 
such cases, architects will need to consider alternative approaches to resisting floods or reducing 
flood damage, such as installing removable flood dams or treating areas below anticipated 
flood levels with materials that allow a structure to take on water without damage. For more 
information on this, see FEMA resources on wet floodproofing vs. dry floodproofing. 

CONCLUSION

Architects are used to considering site issues when planning for new construction—but site 
considerations can also have big impacts for building reuse projects. By considering how your 
project can adapt to a changing climate while mitigating its contributions to climate change, your 
project can perform better on the day it opens—and be prepared for what’s coming.

https://www.fema.gov/pdf/rebuild/mat/sec6.pdf
https://www.fema.gov/pdf/rebuild/mat/sec7.pdf
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ST R U C T U R E / S PAC E  P L A N

A building’s structure typically represents 50–75% of the embodied energy and carbon emissions in 
that building, largely due to the weight and quantity of the materials that comprise the structure. 
For that reason, building reuse that maintains all of the existing structure can meet today’s needs 
with significantly lower carbon emissions than new construction. 

The service life of most building structures often outlasts the initial building use. A critical 
consideration in adapting existing structures to future use and extended service life is how well 
the structure can perform at today’s standards and tomorrow’s hazards and risks. Buildings that 
historically weathered regional hazards may have inherent resilience features or may require 
fortification to ensure a continued service life for new shocks and stresses. They may need to 
employ new strategies to withstand more intense storms and climate events to function and/or 
serve the community during and after a disaster. The first strategy for reducing embodied carbon in 
the AIA-CLF Embodied Carbon Toolkit for Architects 
is to reuse/retrofit existing buildings. Tools like the 
Carbon-Avoided Retrofit Estimator (CARE) and the 
Early Phase Integrated Carbon (EPIC) Assessment 
website can help you develop quick (minutes, not 
hours) estimates quantifying the reduction in carbon 
emissions from the reuse of a structure and other 
building components. Architects can take advantage 
of the big benefits from reusing existing structures 
while balancing their ability to function in their 
extended service life.

OPPORTUNITIES

•	 Can the existing structure withstand load capacity? 

	> For example, adapting an existing parking garage to other uses is usually challenged by the 
fact that parking garages tend to be designed to support lighter live loads than offices or other 
building types.

•	 Which programs work well with the existing building structural bay sizes? 

	> For example, existing buildings with narrowly spaced columns may work well for residential 
programs but less well for offices and assembly spaces.

•	 What passive strategies can be incorporated?

	> When laying out the program, identify the areas that could benefit most from access to views, 
daylight, and natural ventilation, and locate those near the perimeter while locating storage 
and less-frequently used spaces in the areas where these resources are less available.

	> Spaces near an operable window can take advantage of natural ventilation when outdoor 
air conditions are appropriate. Typical guidance states that spaces within 20–25 feet of an 
operable window can be naturally ventilated if the open area is at least 5% of the floor area 
being served.

	> Spaces with operable windows on opposite sides (but separated by less than five times the 
room height) can take effective advantage of cross-ventilation.

	> For taller buildings, stack ventilation can use the buoyancy of warm air rising to draw air up 
and through the building, as long as care is taken to meet code requirements limiting the 
number of interconnected floors.

	> Floor areas no deeper than twice the height of the top of the glazing can typically be 
effectively daylit.

	> Pay attention to existing features like column or window spacing, and explore which test 
layouts work best with these rhythms.

A building’s structure typically 
represents 50–75% of the 
embodied energy and carbon 
emissions in that building 

https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
https://content.aia.org/sites/default/files/2021-10/21_10_STN_DesignHealth_474805_Embodied_Carbon_Guide_Part3.pdf
https://caretool.org/
https://epic.ehdd.com/
https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
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Image credit: AIA

BEST PRACTICES

Is the structure equipped to handle current  
and future climate stresses, or to meet updated structural codes? When adding to a structure,  
look for opportunities to make the added structure support project goals. For example, if cross-
bracing or a shear wall needs to be added to meet increased wind or seismic loads, look for places 
to locate this additional structure that works well with the program. 

Tips for maintaining as much of the existing structure as possible:

•	 �Work within the existing floor area to meet the program requirements. 

•	 �Validate space needs and look for opportunities to incorporate flexible, adaptable spaces into 
an existing structure, both creating and providing long life and loose fit.

CHALLENGES

If the work contemplates a change of use or the scope exceeds the threshold requiring 
compliance with current codes, structural upgrades may be required to meet current seismic or 
wind load requirements.

Existing structures, especially those with steel members, may have used fireproofing containing 
asbestos or be coated in paint containing lead. Hazardous materials mitigation can add 
substantially to project cost and schedule. Investigating these issues at the beginning of design 
can reduce schedule delays. 



T O DAY ’ S  B U I L D I N G S  FO R  T O M O R R O W :  GUIDE TO BUILDING REUSE FOR CLIMATE ACTION  >  C L I M AT E  AC T I O N  >  1 3

E N V E LO P E

Building envelopes (the roof, exterior walls, windows, etc.) play a critical role in not just how 
buildings look but also in occupant comfort and building energy use. So, a key consideration 
in any building reuse project is whether to restore, upgrade, or replace the envelope. Complete 
re-skinning of a building can provide a “new” building at less expense and lower embodied 
carbon emissions than new construction, but the embodied carbon emissions associated 
with building envelopes can still be significant. It’s worth carefully considering preserving as 
much of the building envelope as possible while improving its performance through better air 
sealing, insulation, or selectively replacing the glazing. This approach can provide new-building 
performance at significantly lower cost and carbon.

OPPORTUNITIES

•	 �What in the current envelope is working well? Which elements have caused problems with, for 
example, air infiltration or water entry?

•	 �For the opaque portions of the envelope, can infiltration be located via field testing and sealed 
with caulk?

•	 �For the opaque portions of the envelope, can insulation be safely added?

•	 �If the project is located in a region where severe storms, hurricanes, or tornadoes make 
large missile impact a concern, are the existing windows, storefront, or curtain wall rated to 
withstand these impacts? If not, what are the options for upgrading?

	> Note that impact resistance is a property of the glass, the frame, and how the frame is tied 
into the rest of the building structure. Replacing the glass or applying a film to the existing 
glass may offer some improved safety but will likely not perform the same as a replaced 
window, storefront, or curtain wall. 

•	 �For windows, storefront, and curtain wall, what changes can be made to provide the most 
benefit for the least cost and embodied carbon?

	> If existing windows are wood-framed, especially older windows likely made from tight-
grained, old-growth wood, it’s often well worth finding ways to restore these rather than 
replace them. Research by the Preservation Green Lab indicates that, in many climates, a 
restored wood window with good air-sealing can perform nearly as well as replacement 
windows. In the most challenging climates, interior or exterior storm windows can provide 
added performance at a fraction of the cost and carbon of replacement.

Image credit: Fokussiert / Adobe Stock

https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
https://www.researchgate.net/publication/333969461_Comparative_whole_building_life_cycle_assessment_of_renovation_and_new_construction
http://www.landmarks.org/wp-content/uploads/2016/07/Saving_Windows__Saving_Money_Evaluating_the_Energy_Performance_of_Window_Retrofit_and_Replacement_NTHP_Preservation_Green_Lab.pdf
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	> In commercial projects using aluminum-framed curtain wall or storefront systems, note that 
some manufacturers now offer takeback programs that allow replacement of existing frames 
with ones with better thermal or impact performance at a much lower environmental impact.

	> Glass and glazing have evolved substantially over the last century, from the clear, 
single-pane glass manufactured before 1950 to the low-visible-transmittance solar control 
glazing of the 1950s through the 1980s to the high-visible-transmittance, highly insulating 
glazing units available today. Many commercial buildings designed in the 1960s through 
the 1990s used dark, low visible-transmittance glass to limit solar gain, reducing daylight 
levels indoors and offering poor thermal comfort near the glass. Replacing this glazing with 
modern glazing can improve the occupant experience even if the glazing replacement is not 
paid back in simple energy savings. Even for projects under stringent historic preservation 
restrictions, neutral-color, single-pane, hard-coat, low-e glazing, and, more recently, 
innovations in vacuum-insulated and glazing units can offer high performance in a very  
thin system.

BEST PRACTICES

For many projects, it’s useful to consider envelope interventions in the following order to evaluate 
their potential cost and savings potential:

•	 Improved air sealing

•	 Increased insulation

•	 �Repair/restoration of seals and gaskets at doors  
and windows

•	 Secondary window layers (storm windows, curtains, blinds)

•	 Glass modification (applied films)

•	 Glazing unit replacement

•	 Window unit replacement

•	 Roof replacement

•	 Complete envelope replacement

Airtightness: It has long been understood that reducing unintended infiltration and air leakage 
through the building envelope is important, but it is often incorrectly assumed that this is only 
a significant concern for homes and residences. Measurements on a broad range of commercial 
buildings have demonstrated that infiltration has a significant impact on HVAC energy in these 
buildings as well. 

Image credit: Anna Holowetzki

https://www.vitroglazings.com/products/special-applications/vacumax-vacuum-insulating-glass/
https://www.pilkington.com/en/us/products/product-categories/thermal-insulation/pilkington-spacia
https://www.govinfo.gov/content/pkg/GOVPUB-C13-db70d72cbf88472707ae51276ee7e599/pdf/GOVPUB-C13-db70d72cbf88472707ae51276ee7e599.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-C13-db70d72cbf88472707ae51276ee7e599/pdf/GOVPUB-C13-db70d72cbf88472707ae51276ee7e599.pdf
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•	 �While whole-building envelope replacement offers the opportunity to provide continuous air-
weather barriers, before-and-after tests of infiltration for historic building retrofits have shown 
that attention to reducing leakage at building penetrations (such as windows, doors, and 
vents) and at the interface between walls and roofs can cut infiltration to levels below that 
specified by the most recent codes for new construction. 

Insulation: Many architects are surprised by the huge range of embodied carbon and global 
warming potential (GWP) in different insulation options. 

•	 �Insulation is undergoing a rapid evolution due to architects specifying lower GWP alternatives. 
Manufacturers continue to develop lower GWP versions of their products, so while articles and 
guides related to insulation provide a useful framework for thinking about the pros and cons 
of each option, older surveys may be out of date. Architects can verify the GWP of current 
products by searching for the Environmental Product Declaration (EPD) on a manufacturer’s 
website. The EC3 (Embodied Carbon in Construction Calculator) tool makes it easy to compare 
EPDs from various manufacturers.

•	 �Specify low-GWP insulation and cladding materials where climate factors allow. In humid, 
mold prone environments, detail any natural fiber insulation to vent and be properly protected 
from moisture. Balance additional insulation with mechanical efficiency for overall operational 
improvement.

•	 �In houses, insulating the attic has a high ROI. This Old House notes that, “The Department of 
Energy estimates that a properly insulated attic can shave 10 to 50 percent off your heating 
bill…and stabilize your house’s indoor temps to keep cooling needs in check.” 

•	 �An infrared camera scan of the building by a trained professional can help identify both points 
of air leakage and points of thermal bridging.

Windows: In older houses and small-scale commercial buildings, research by the Preservation 
Green Lab found that “a number of existing window retrofit strategies come very close to the 
energy performance of high-performance replacement windows at a fraction of the cost.” The 
retrofit strategies evaluated for locations across the country (with varying climates and utility 
costs) included:

•	 weather stripping

•	 applied window films

•	 insulating cellular shades or insulating curtains

•	 interior or exterior storm windows

Image credit: Liudmila / Adobe Stock
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Only after evaluating these retrofit strategies should architects consider replacing the glazing or 
the entire window system. The Advanced Energy Design Guides are a good resource for U-values 
and the solar heat gain coefficient (SHGC) appropriate to your climate. 

Roofing: The roof may be the least-seen but most-important component for preserving a 
building. The roof can also have a significant impact on energy performance and occupant comfort. 
Upgrading the roof can be a relatively easy way to protect the building and improve performance.

•	 In buildings with low-slope (“flat”) roofs where insulation is typically above the roof deck:

	> Inspect for ponding that may indicate compression of roof insulation or settling of structural 
members.

	> If the roof still appears to have a substantial service life ahead, consider application of high-
reflectance “cool roof” coatings.

	> If the roof is close to the end of its service life, consider replacing the roofing along with 
upgrading insulation levels to meet or exceed those of the latest national energy code or of the 
Advanced Energy Design Guides. Select for low-GWP insulations using tools such as EC3.

•	 In buildings with high-sloped roofs or attics:

	> If ductwork for the HVAC system is currently run within the unconditioned attic, it may be 
worth considering moving the point of insulation to the underside of the roof decking. This 

“conditioned attic” or “unvented attic” approach means that ducts are not sitting in a hot attic 
in summer and leaking conditioned air into the great outdoors.

If complete envelope replacement is the most appropriate option for your project, free tools like 
Kaleidoscope can help you identify building envelope assemblies with a lower embodied carbon 
footprint.

Meeting the standards of Passive House certification, which has been achieved in building 
retrofits, might be the “gold standard” of envelope performance. Doing so typically involves full 
window replacement with triple-glazed units and additional layers added to the inside or outside 
of exterior walls. In such cases, it’s important to evaluate the embodied carbon of the new 
components to verify that the carbon spent on the upgrade is paid back by the savings due to 
reduced emissions. 

Image credit: Getty Images
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CHALLENGES

•	 �Special attention is required when adding insulation, air barriers, and/or vapor retarders to 
previously uninsulated or under-insulated wall assemblies; such assemblies can trap moisture 
or condensation inside the walls. Moisture can increase the risks of producing conditions 
favorable for mold growth. Any modifications to the envelope should anticipate the possibility 
that water may get into the wall, so it is imperative to provide ways for the assembly to dry 
out. Using materials that promote good air sealing while allowing for drying through high-
vapor permeability can be a safer choice. The Building Science Corporation offers a library of 
resources and best practices adapted for each climate—for example, the group offers guidance 
on how best to insulate existing load-bearing masonry walls.

•	 �Historic preservation groups often prize the appearance of single-pane historic windows and 
resist their replacement, even with reproduction windows capable of accommodating higher-
performance insulated glazing units. In many climates, a well-restored single-pane window can 
perform remarkably well if attention is paid to air sealing. Performance can be improved further 
with hard-coat, low-e, single-pane glass or vacuum-insulated glazing.

•	 �In new construction, many designers prefer the defense-in-depth approach afforded by 
rainscreen building envelopes, where the wall exposed to the elements is held off the building 
sheathing, allowing for a “drainage plane” behind, and the air/weather barrier separating 
indoors from outdoors is protected from the elements. Converting a non-rainscreen envelope to 
one based on rainscreen principles typically requires adding additional exterior layers.

H VAC / SY ST E M S

Mechanical equipment in existing buildings is often dated and inefficient, and full or partial 
replacement can result in dramatic energy savings and air quality improvements that can promote 
occupant health. On the other hand, relatively new and well-maintained equipment may have 
years of service life remaining. A careful component-by-component assessment of performance 
and remaining service life is an important first step in the design process. In efforts to reduce 
operational carbon, evaluating the efficiency of a system and planning for simple upgrades can 
improve performance. What energy codes are the current systems meeting? Since an improved 
building envelope can reduce peak heating and cooling demands, replacement equipment may be 
significantly smaller and less expensive. The best mechanical system is a great building envelope.

Image credit: Getty Images
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OPPORTUNITIES

•	 Can the passive strategies that may have informed the original design of the building—for 
example, cross-ventilation—be reactivated?

•	 Can the roof structure support photovoltaic or solar thermal systems?

•	 In regions where utility-provided electricity is threatened during severe weather or seismic 
events, is it worth considering on-site emergency generation or battery storage?

•	 With extreme weather events such as heat domes becoming more common, is it worth sizing 
systems to handle prolonged heat or cold? Can increased insulation levels help reduce heating 
and cooling system oversizing while ensuring occupant safety during power outages, as 
explored by Urban Green in its study “Baby It’s Cold Inside”? 

BEST PRACTICES

Design for the climate that’s coming. Future weather patterns may require greater cooling, less 
heating, or improved filtration to remove particulate matter from outdoor air impacted by wildfires 
hundreds or even thousands of miles away. While existing systems may have sufficient capacity, 
plan for how additional capacity will be added in the future. 

Conduct an energy audit to identify appropriate energy conservation measures (ECMs) for  
the project. These audits can be conducted at increasing levels of detail following the  
ASHRAE definitions of Level 1, 2, or 3 audits.

T YPE S OF AU DI T T YPE S OF AU DI T B R IE F DE SC R IP T ION

Level 1

•	 Brief on-site of the building

•	 Savings and cost analysis of low-cost/no-cost Energy 
Conservation Measures (ECMs)

•	 Identifications of potential capital improvements meriting 
further consideration

Level 2

•	 More detailed building survey

•	 Breakdown of energy use

•	 Savings and cost analysis of all ECMs

•	 Identification of ECMs requiring more thorough data collection 
and analysis (Level 3)

Level 3 •	 Attention to capital-intensive projects identified during the  
Level 2 audit

•	 More detailed filed analysis

•	 More rigorous engineering analysis

•	 Cost and savings calculations with a high level of accuracy

Typical low-cost ECMs include energy recovery ventilators (which use the heat content and humidity 
level of stale air being expelled to pre-condition fresh air being taken in) and replacing old lighting 
fixtures with LED lighting. When looking to improve operational efficiency, additional high-impact 
options to explore include:

•	 �Replacing furnaces with electric heat to eliminate combustion. If loads are modest, inexpensive 
electric resistance heat can be an affordable, 100% efficient option. If loads are larger, a heat 
pump, which can deliver 3 or 4 kilowatt-hours of heat for every kilowatt-hour of electricity 
consumed, can be an attractive choice. For existing buildings in warm climates that already 
have air conditioning, electric service may already allow the replacement of the AC unit with an 

https://www.urbangreencouncil.org/baby-its-cold-inside/
https://web.archive.org/web/20220613232707/https:/www.energyadvantage.com/blog/the-difference-between-ahsrae-level-1-2-3-energy-audits/
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air-sourced heat pump. For buildings without air conditioning, the electric service may not have 
sufficient capacity to support a heat pump, especially if it is determined that electric resistance 
strip heaters will be needed during the coldest temperatures. In the U.S., incentive programs can 
help cover the cost of electric service upgrades.

•	 Adding insulation (see the “Envelope” chapter).

•	 Locating and repairing any leaks in ductwork or refrigerant lines.

•	 �Considering replacement of older appliances with high-efficiency models if they are near the 
end of their service life. In the U.S., EnergyStar denotes appliances of a given size or capacity 
that are among the 25% most efficient. 

Go all-electric. Most existing buildings have both electric and fossil-fuel services (gas, propane, 
oil). Fossil fuel infrastructure is aging and is a large source of carbon emissions. “A tenth of total 
US carbon emissions come from burning fossil fuels—primarily gas—for heating and cooking in 
homes and businesses,” according to clean energy nonprofit RMI. The primary component of 
natural gas is methane, a potent greenhouse gas (many times more effective at absorbing heat 
than the carbon dioxide produced when it is burned), and it is estimated that the global warming 
impact from leaks in the natural gas distribution system may be comparable to that produced by 
gas combustion. The average natural gas pipe in service in the U.S. is over 30 years old, and the 
cost to replace the services lines is significant. Cooking with gas also creates air quality and health 
concerns for building occupants. A device that uses natural gas today will have the same carbon 
footprint in the future, while a device that 
uses electricity will have a carbon footprint 
that shrinks as more renewable sources are 
deployed and the grid decarbonizes. 

Heat pumps. “Existing conventional heating, 
ventilation, and air conditioning (HVAC) 
systems, including gas- and oil-fired furnaces, 
gas- and oil-fired boilers, low-efficiency air 
conditioners, electric resistance furnaces, 
and electric resistance unit heaters, in both 
residential and commercial applications can 
all be replaced with [electric, high-efficiency 
heat pumps],” according to Project Drawdown, 
a climate solutions organization. Heat pumps 
are devices that move heat from a cooler 
area to a hotter area. They can extract heat 
from cool outdoor air (or from the ground, in 
the case of ground-source heat pumps) and 
deliver it to the building in winter, or extract 
heat from inside the building and expel it outside in summer—so they can both heat and cool. 
RMI observes, “Electrifying air heating and cooling with air-source heat pumps will immediately 
reduce emissions…even in the coldest, most heating-intensive climates.” Air-sourced heat 
pumps are generally recommended for climates that get as cold as -15°F (-26°C). For projects in 
locations that routinely get colder than that, electric resistance strip heaters may be required, or, 
where adjacent land is available, ground-source heat pumps (which draw heat from the relatively 
constant temperatures underground) may be an attractive option. Heat pumps provide energy and 
carbon savings across all building types and climate regions.

DOAS. When upgrading the heating and cooling systems in existing buildings, HVAC strategies 
that use dedicated outdoor air systems (DOAS) can offer better indoor air quality and occupant 
comfort while taking less space for ductwork. Compared with conventional ducted HVAC systems, 
where ducts contain a mix of fresh and recirculated air, in a DOAS system, the ducts contain 
only 100% fresh air and so can be smaller; temperature control is maintained independently 
through fan coil units or radiant systems. Thus the amount of fresh air an occupant receives is not 
dependent on how much heating or cooling they are requesting. This approach is sometimes less 

Image credit: Annie Spratt
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expensive than conventional air-based systems and sometimes more expensive, depending on the 
particular conditions of the project.

Filtration. Whatever the HVAC system, it’s prudent to plan for high-efficiency filters. In the past, 
filters in HVAC systems were present mostly to protect the systems themselves, preventing the 
accumulation of lint and other materials on the heating or cooling coils. However, recent research 
on airborne infectious agents, such as influenza or COVID-19 (which can hitchhike on fine water 
droplet aerosols suspended in the air), has shown that high-efficiency filters (characterized by a 
MERV rating of 13 or higher) can significantly reduce disease spread. The same filters can also 
trap fine particulate pollution from vehicles or distant wildfires. In the past, pushing air through 
high-MERV filters placed excessive loads on circulation fans, but recent improvements in filter 
technologies has largely eliminated these issues.

LED lighting. The previous generation faced the task of replacing incandescent lighting with more 
efficient fluorescent or compact fluorescent lighting; today’s generation can go even further by 
using LED lighting, which offers greater efficiency, improved lighting quality and color rendering, 
and lower environmental impact than fluorescents. As with any electric light source, both lighting 
quantity and quality matter. For lighting quantity, you want as much visible light (lumens) per unit 
of electric power consumed (watts); the best LED lights deliver more than 100 lumens per watt. An 
important measure of lighting quality is characterized by the color rendering index (CRI), with a 

“perfect” light source defined as CRI 100; look for fixtures with CRI greater than 90. 

Lighting controls and occupancy sensors. Even with more efficient light sources, it still 
makes sense to have lights on only when they are needed. Modern energy codes require the use 
of occupancy sensors to turn lights off in unoccupied spaces and automatic daylight dimming in 
spaces with sufficient daylight. Even if your local code doesn’t yet require sensors, consider using 
them on your project. 

Refrigerant leaks. Refrigerators, air conditioners, and heat pumps move heat around by 
compressing a refrigerant gas into liquid form at one location (giving off heat) and then letting 
it expand into gas form at another location (absorbing heat). These refrigerant chemicals, which 
include the one known commonly by its trade name “freon,” do wonderful things as long as they 
are completely contained. But when they escape into the atmosphere, many become powerful 
greenhouse gases due to absorption of infrared radiation that acts as a blanket trapping heat in 
the atmosphere. There are dozens of different types of refrigerants, and different refrigerants 
have different heat-trapping power—or global warming potential—compared with the same 
quantity of carbon dioxide. The most common refrigerant today, R-22, has a 100-year GWP of 1,810, 
almost 2,000 times the potency of carbon dioxide, so just one pound of R-22 is nearly as potent as 
a ton of carbon dioxide. Because of this, eliminating refrigerant leaks, either by decommissioning 
refrigerant systems and replacing them or by a comprehensive maintenance plan, provides 
high impact. 
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•	 �Plan to replace existing systems with equipment that uses next-generation, low-GWP 
refrigerants. Instead of GWP 1,800, the newest systems have a GWP as low as 1—essentially 
the same as a comparable quantity of carbon dioxide.

•	 Use prefabricated systems and elements to manage potential leakage points. 

•	 �If equipment and refrigerant lines are to remain, make a refrigerant management plan to 
manage leaks if the existing system will continue to operate.

Appliances. For multifamily residential projects, appliance loads can make up a substantial portion 
of energy use. Using ENERGY STAR appliances can result in a 10–50% savings in energy. ENERGY 
STAR–rated appliances are made by a wide variety of manufacturers and often do not have a cost 
premium compared to nonrated appliances! Note that ENERGY STAR–certified appliances are 
those in the most efficient 25% of those offered; so even among those carrying the ENERGY STAR 
label, some may be significantly more efficient than others. You can search by appliance type, 
residential or commercial, size, and more using the ENERGY STAR product finder. 

Water. As power outages become more frequent, it may be important to consider the resilience 
of access to potable water. High-rise buildings that use water pumps to reach higher floors may 
consider putting them on backup power or (where health regulations allow) using a rooftop cistern 
to provide water during power outages.

The first strategy in reducing energy consumption and carbon emissions associated with heating 
water is to reduce the amount of hot water needed by using low-flow fixtures such as those meeting 
the EPA WaterSense certification criteria. 

Consider whether solar hot water systems are an appropriate option at your location; in some 
climates, the same amount of roof area covered with solar electric (photovoltaic, or PV) panels 
driving a heat pump water heater may deliver more hot water.

Building controls. Depending on the size of the project, smart-building controls can be as simple 
as a programmable or smart thermostat or as sophisticated as a building automation system (BAS).

•	 �Consider a smart thermostat that combines an occupancy sensor with algorithms that learn 
from occupant temperature requests while minimizing heating and cooling demand when no 
one is present.

•	 �Use occupancy sensors to reduce the load on mechanical systems.

•	 �Make it easy for occupants to take advantage of “free cooling” through natural ventilation 
without triggering excess mechanical heating and cooling.

Image credit: Saklakova / Adobe Stock
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CHALLENGES

The more sophisticated the building systems, the more difficult it may be for building occupants or 
building operations staff to control or diagnose problems. An efficient system that is being operated 
in ways the designer did not intend can result in both excessive energy use and unhappy occupants. 
Training, clear documentation, and simplified “quick-start” user guides can make the difference.

Electrifying any one building may be straightforward, but electrifying every building on a street or in 
a neighborhood may require upgrades to the electrical distribution service and coordination with the 
local electric utility. If building reuse projects focus on upgrading building envelopes first, the peak-
demand impact of electrifying heating can be reduced.

M AT E R I A L S

Over the life of a building, successive renovations (tearing out interior walls, installing new ones, 
replacing flooring or ceilings) can have a substantial carbon footprint; one study of an office 
building found that the cumulative carbon footprint of “tenant improvements” over six decades 
rivaled the carbon footprint of constructing the building. Planning for projects to be easily 
adapted to new uses over time minimizes the cost to the owner along with life cycle carbon. 
Consider planned replacement cycles and expected element lifespans using Stewart Brand’s 

“pace layering”: site, structure, skin, services, space plan, and stuff. Space plan and stuff commonly 
have high turnover and short replacement cycles, while skin, structure, and systems have longer 
operation and performance lifespans. Choose finishes appropriate for their expected lifespan, and 
opt to design for more durable, flexible materials to reduce replacement cycles in favor  
of maintenance.

OPPORTUNITIES

•	 �Do any materials need to be removed and remediated to reduce or eliminate unhealthy  
off-gassing, toxins, or mold?

•	 �Can elements with high turnover utilize highly recyclable, material buy-back, or circular 
products? Can these elements be designed for disassembly?

•	 �Where can new finishes be eliminated and instead use existing building elements as a  
design feature?

•	 �Instead of standard demolition, can portions of the building be carefully dismantled to allow the 
components to be salvaged on-site or elsewhere?

BEST PRACTICES

Balance maintenance, replaceability, and planned obsolescence with service life and expected 
durability tests of material finishes. Understand project use and advocate for more durable, 
low-maintenance materials appropriate for the climate and risks. Find materials that can 
withstand shocks rather than require replacement after experiencing a hazard event. For example, 
materials that resist salt, moisture, corrosion, and leaching  
work well for flood-prone areas. 

If materials require regular maintenance to ensure their function and durability, work with the 
owner to ensure a conservation and maintenance plan is in place. Proper care for buildings as 
resources can safeguard occupant health and offer comfort and long-term replacement  
cycle savings.

No matter the project scale or scope, architects choose and write specifications for materials and 
finishes. LMN Architects found that over the lifespan of a building, the embodied carbon of interior 
finishes can equal that of the structure and envelope due to replacement cycles and maintenance. 
When considering climate action strategies in buildings, it’s important to consider planned 

https://lmnarchitects.com/lmn-research/tenant-improvements-embodied-carbon-study
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replacement cycles and expected element lifespans as well as how they will weather in the 
changing climate. Finishes can also have occupant health implications, as well as affect workers 
involved in the manufacturing of a building product. For any project undergoing a renovation, 
follow guidance similar to the common phrase “refuse, reduce, reuse, and recycle.”

Minimize finishes. Reduce additional finishes by using existing features as finishes where possible. 
Reduce duplication: For example, can the structural floor also be the finished floor? Where a finish 
is not needed, celebrate beautiful construction and materials. During design, demolition, and 
construction, look for opportunities to deconstruct and reuse existing building materials that would 
be suitable as finishes. 

Low carbon. Embodied carbon is created each time a product is manufactured. Once a material 
has been produced, it makes sense to reuse it as much as its usable service life allows. Look 
for opportunities to use salvaged and reclaimed materials. If a new product is needed, carbon-
sequestering materials (such as bio-based materials that have drawn carbon dioxide out of the air 
and locked the carbon in the material structure) are market-ready and available, especially at the 
residential scale. Carpets, ceiling tiles, and metal products can be low-carbon materials because 
of high recycled content, and many manufacturers in this market sector offer material take-back 
programs in which they accept old materials removed from the project and use them as feed 
stock for new materials. Take-back programs move toward a circular economy at product end-of-
life—a great thing for embodied carbon. Look for Environmental Product Declarations (EPDs) to 
understand manufacturer transparency and measurement for things like carbon. 

Healthy materials. While the focus of this guide is climate action, it’s important to recognize that 
any renovation is an opportunity to provide spaces that support human health. The AIA Materials 
Pledge helps you specify low-carbon, healthy materials. The goals of the pledge are supported by 
product certifications and eliminating the substances identified in the Living Future Red List. If 
the Red List is new to you or your firm, aim to eliminate one Red List chemical from your materials 
library per project. Set a goal for full product and supply chain transparency for finishes. Ask for and 
specify products with Declare, Just, GREENGUARD Gold, Cradle to Cradle, and other certifications 
focused on material toxicity and transparency. 

•	 �Require products with Health Product Declarations (HPDs) or other material health transparency 
in product specifications. 

•	 Aim for low-VOC, Red List–free materials.

•	 Measure and report waste material, waste diverted, and health and safety of on-site workers.

Image credit: Getty Images

https://materialspalette.org/palette/
https://materialspalette.org/palette/
https://www.aia.org/pages/6351155-materials-pledge
https://www.aia.org/pages/6351155-materials-pledge
https://living-future.org/lbc/red-list/
https://millerhull.com/wp-content/uploads/Miller-Hull-Red-List-v1.1.pdf
https://living-future.org/declare/basics/#:~:text=Declare%20is%20a%20nutrition%20label,the%20final%20product%20by%20weight.
https://www.ul.com/resources/ul-greenguard-certification-program


T O DAY ’ S  B U I L D I N G S  FO R  T O M O R R O W :  GUIDE TO BUILDING REUSE FOR CLIMATE ACTION  >  C L I M AT E  AC T I O N  >  24

CHALLENGES

Every year, thousands of new paint, carpet, flooring, and ceiling products are introduced. 
Investigating what goes into even the most commonly specified materials can feel like an 
overwhelming task. Using screening tools like the Materials Pledge or the other certification labels 
discussed here can help keep the process manageable.

CONCLUSION

This guide provides a high-level overview of the opportunities and challenges associated with 
reusing existing buildings in an age of climate change. By reusing existing buildings, we can adapt 
existing structures to meet today’s needs while anticipating a changing climate and reducing the 
built environment’s contribution to climate change.

The approach the guide has outlined can be summarized as:

•	 Design for the climate that’s coming, not just the one we have today.

•	 �Reuse as much of the existing structure as possible, and organize spaces within that structure 
in ways that take advantage of what’s there.

•	 �Upgrade the building envelope to improve the occupant experience while reducing the need for 
mechanical heating, cooling, and lighting, and select materials with low embodied carbon.

•	 �Select building systems (heating, ventilation, cooling, lighting, and water heating) and 
appliances that take advantage of the move toward a zero-carbon electric grid while supporting 
occupant comfort, health, and productivity.

•	 �Select materials without negative human health impacts—which is especially important 
because upgraded buildings are typically tighter; select low-embodied carbon materials and 
ones that can be disassembled and easily recycled.

Building reuse reminds us that sustainability is design with time and consequences in mind. 



> C A S E  ST U D I ES
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CASE STUDY: MYERS-HECKMAN RESIDENCE, OVER-THE-RHINE, OHIO

Myers-Heckman Exterior Historic Facade | Myers-Heckman Contemporary addition          
Image Credit: Sol design + consulting

ARC HI TEC T: Sol Design + Consulting

B UILDING T YPE: Single-family residence 	

LOCAT ION : Cincinnati, OH 

AR E A : 3,962 SF 

YE AR B UILT (OR IGINAL ) : 1870 

YE AR OF R E NOVAT ION : 2020 

PE UI : 16.7kBTU/sf/yr vs. 75kBTU/sf/yr pre-retrofit

E MBODIE D CAR BON : 108 kgCO2e/m2 vs. equivalent new single family 200 kgCO2e/m2  

Longtime residents of historic Over-the-Rhine, Ohio, renovated their single-family residence to 
promote neighborhood preservation and showcase sustainability alongside historic preservation 
goals. The project, situated in a dense urban area, reused the existing structure, improved 
performance, and reduced strain on city infrastructure with reduced energy and water needs.

CLIMATE HAZARDS

Ohio has historically been prone to:

	 1. �Flooding: The area has faced periodic flooding due to its proximity to the Ohio River and 
inadequate stormwater management.

	 2. �Extreme heat: The urban heat island effect has resulted in higher temperatures, particularly 
during heatwaves, affecting occupant comfort and energy consumption.

	 3. �Storm damage: The district is susceptible to damage from severe weather events such as 
storms, high winds, and hail.

Design for 
energy

Design for 
water

Design for 
resources

Design for 
change
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In Ohio, the most acute anticipated effects of climate change are largely more severe versions of 
the historic regional hazards:

	 1. �Increase in high-intensity rain events and associated flooding: The area is expected to 
experience more frequent and intense rain events, leading to a higher risk of flooding and  
water damage.

	 2. �Increase in extreme heat events: The region will likely see more frequent and prolonged 
heatwaves, resulting in elevated temperatures and potential risks to human health.

	 3. �More frequent power outages: With the intensification of weather events, the likelihood of 
power outages may increase, impacting daily life and infrastructure reliability.

The homeowners were deeply committed to historic preservation and sustainability, embracing 
energy efficiency, walkability, and renewable energy. The renovation project prioritized reuse, 
preserving almost all of the existing building and finishes. Historic trim, baseboards, and 
wainscoting were carefully restored and reinstalled over new rigid insulation. Original wood 
flooring, plaster walls, and exposed brick were celebrated, eliminating the need for new finishes in 
those areas.

Myers-Heckman Kitchen  |  Image Credit: Sol design + consulting

ARCHITECT’S AGENCY

The design team’s agency played a crucial role in recognizing the renovation project’s potential 
and creating a more holistic and sustainable building through these key actions:

	 1. �Informed material choices: Offering guidance on embodied carbon, resilient and durable 
materials, and health impacts to inform material choices.

	 2. �Envelope improvements: Ensuring high-performance envelopes with insulation and 
airtightness to support passive energy efficiency and survivability during extreme events.

	 3. �Efficient and resilient systems: Providing insights on efficient systems to achieve 
sustainability, health, and resilience goals.
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The existing masonry walls were found to be durable, and interior insulation was added with 
meticulous attention to best practices, avoiding durability issues related to moisture or freeze-
thaw conditions. Mindful of climate hazard risks, the design incorporated durable materials for 
the roof and facade to withstand heavy rainfall. Standing seam metal roofing and a rainscreen 
system for new walls were chosen. High-performance envelopes with enhanced insulation and 
airtightness ensure habitable interior conditions during power outages and extreme weather 
events, creating a home with passive survivability and shelter-in-place capability. 

Figure 1: Diagram of design and retrofit elements contributing to a better building.  |  Image Credit: Sol design + consulting

Paired with on-site solar and battery storage to provide temporary power during outages, the 
project realized a pEUI reduction from 75 kBTU/sf/yr pre-retrofit to 16.7 post-retrofit. The project 
also electrified HVAC systems, avoiding combustion and associated pollutants. An ERV saves 
energy and provides filtered (MERV 13) fresh air. The envelope was designed to manage humidity 
and moisture, avoiding potential condensation and mold issues.

 
Carbon emissions, pre-retrofit: 140,200 lbs CO2e/yr 
Carbon emissions, post-retrofit w/o solar: 36,979 lbs CO2e/yr 
Carbon emissions, post-retrofit with solar: 15,498 lbs CO2e/yr 
Carbon payback without solar: 0.9 yrs  
Carbon payback with solar: 2.3 yrs 
(Embodied carbon of solar array: 203,175 lbs CO2e) 

Despite being on a small lot in an urban site, the project manages 65% of stormwater from its 
roof via a 550-gallon cistern buried in the backyard. This water is used for irrigation and then 
infiltrates back into the earth, mimicking natural hydrology. This system helps alleviate stress on 
Cincinnati’s already-overburdened combined sewer system.
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QUESTIONS TO ASK IN BUILDING REUSE AND KEY TAKEAWAYS

1. �How can we preserve existing elements to minimize environmental impact and strategically 
improve long-term sustainability?

	� LESSONS LEARNED: The team found that existing elements can be largely preserved while 
still significantly upgrading performance. The project reused the following:

	 98% of existing exterior walls 
	 88% of existing interior walls 
	 100% of existing foundation 
	 94% of existing finish flooring 
	 98% of existing trim, baseboards, and wainscoting  
	� Retaining the structure and envelope saves carbon, and the team still made dramatic 

operational carbon improvements.

 
2. �How can we enhance the building’s envelope with new and existing materials, maintaining 

historical integrity while improving energy efficiency?

	� LESSONS LEARNED: Careful attention must be paid to detailing when adding insulation to a 
masonry structure. The team added a new roof with R-50 insulation over the entire structure 
(both new and old portions). Continuous R-10.5 interior insulation was added to existing brick 
walls. New walls were framed as double stud with R-25 insulation. Windows were replaced with 
low-e double-pane windows (U-0.29).

 
3. �How can we integrate an updated and efficient system, leveraging existing conditions to 

enhance resilience against climate hazards?

	� LESSONS LEARNED: The cooling system and envelope assemblies were designed together 
to manage humidity and moisture, avoiding potential condensation and mold issues. A high-
performance envelope with additional insulation and airtightness can maintain habitable 
interior conditions for longer durations during power outages and/or extreme heat or cold 
events, allowing for passive survivability.

The renovation of this single-family residence in 
Cincinnati’s historic Over-the-Rhine district is an 
exemplary model of sustainability and historic 
preservation. By addressing climate hazards and 
responding to the anticipated effects of climate 
change, the project showcases how thoughtful 
architectural agency can create resilient and 
sustainable urban spaces.

Incorporating historic preservation, energy 
efficiency, and sustainable design principles, this 
project not only exemplifies the compatibility 
of sustainability with historic neighborhoods 
but also offers valuable lessons for future 
renovation endeavors in the face of a changing 
climate. The commitment to resilience and 
sustainability showcased in this renovation is 
a testament to the vital role architects play in 
creating buildings that harmoniously coexist 
with their environment and promote the 
well-being of occupants and communities.Myers-Heckman Side Exterior  

Image Credit: Sol design + consulting
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CASE STUDY: CENTER FOR CREATIVITY, FOUNDRY 101

Foundry 101, Exterior  |  Anton Grassl courtesy of CambridgeSeven

ARC HI TEC T: CambridgeSeven 

B UILDING T YPE: Center for Creativity 	

LOCAT ION : Cambridge, MA 

AR E A : 50,200 sf 

YE AR B UILT (OR IGINAL ) : 1890 

YE AR OF R E NOVAT ION : 2022 

PE UI : 30.95 kBTU/sf/yr  

The Foundry 101 project is at the intersection of the Kendall Square innovation district and 
the East Cambridge residential neighborhood in Massachusetts. The Foundry’s program was 
developed in response to requests from community groups. The building is used 24/7 by a variety 
of users, especially residents from underrepresented communities in adjacent neighborhoods. 
The dynamic working and learning environment focuses on visual and performing arts, 
entrepreneurship, technology, and workforce education within its historic, industrial setting.

CLIMATE HAZARDS

Cambridge has historically faced several climate hazards, including:

	 1. �Coastal storms: The area is vulnerable to coastal storms, leading to flooding and damage to 
buildings and infrastructure.

	 2. �Extreme heat: Heatwaves and elevated temperatures pose challenges to public health and 
increase energy demands.

	 3. �Heavy rainfall: Intense rainfall events can cause flooding in low-lying areas and increase 
stormwater runoff.

Design for 
energy

Design for 
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Design for 
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Future hazards largely mirror the historic regional hazards:

	 1. �Flooding and increasing rainfall: Buildings in Cambridge face heightened flood risks, 
requiring flood-resistant measures like elevated foundations and improved drainage. The 
project is just outside of the 100-year floodplain but inside the 500-year floodplain. 

	 2. �Warmer climate: Buildings will need to passively cope with heatwaves and reduce cooling 
demands.

	 3. �Power outages: Integrating on-site renewable energy like solar panels with battery storage 
enhances resilience and provides backup power during outages. 

ARCHITECT’S AGENCY

As architectural agents, the team created shared, accessible community spaces; celebrated 
existing features; and reduced the energy needs of the building.

	 1. �Shared street and plaza: The design of the Foundry eliminated the 1980s-excavated, 
below-grade parking garage, allowing all of the building’s program and equipment to sit 
above the projected base flood elevation for 2070. It also allowed for creation of an at-grade, 
barrier-free ground plane adjacent to the street and community courtyard. 

	 2. �Maximize existing features: The historic building’s brick envelope was restored and 
retained, and as much of the roof and wood building structure as was feasible was retained 
to reduce embodied carbon. Much of the interior floorplates and finishes were replaced. The 
design team encouraged the client to retain two of the three skylights to provide natural 
lighting in the central core of the building.

	 3. �Energy solutions: The project focused on reducing operational carbon by using a high-
efficiency variable refrigerant flow (VRF) system that allows for maximum occupant and 
operational flexibility, reduction in the lighting power density to 24% less than a baseline 
design, and high-efficiency heat recovery ventilation units. Building envelope improvements 
included photovoltaic panel design, which is projected to offset 28.5% of annual energy use 
and emissions with renewable energy generated on-site.

The Foundry 101 project is at the intersection of the Kendall Square innovation district and the 
East Cambridge residential neighborhood. The program, born from the community’s needs, 
includes youth workforce training, local arts group studio space, and a warm and welcoming 
community gathering space. Individual workshops include a food lab, maker space, textile and 
metalsmith workshops, and dance studio and performance space.

Foundry 101, Dance Shop, interior  |  Image credit: Anton Grassl courtesy of CambridgeSeven
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In the new project the design team omitted the garage and brought the ground-floor plane back 
to meet universal access. This change also reduced vulnerability to flooding damage. A robust 
stormwater run-off design was installed, including permeable paving and a stormwater retention 
system. All mechanical equipment is located on the roof.

The performance space, designed as a versatile black box theater, can adapt to host music, dance, 
and theater performances with various seating arrangements. The space doubles as a community 
meeting room, fostering engagement and inclusivity. 

Foundry 101 Performance Center, interior after  |  Image credit: Anton Grassl courtesy of CambridgeSeven

Conference rooms on the first floor serve both internal and community needs, and a 
demonstration kitchen provides career training opportunities while catering to community events. 
The offices were designed with both closed offices and open workspaces, ensuring flexibility for 
future tenants.

The design team balanced preservation and innovation. They retained exposed concrete floors 
for the first-floor community spaces and public areas on the office floors, minimizing waste. The 
historic building’s brick envelope was restored and preserved, and whenever possible, the roof 
and wood building structure were retained to reduce embodied carbon. Increased insulation 
was applied at the roof and in the new addition, and high-performance windows were installed 
throughout the building. No insulation was added to the historic brick envelope in order to 
minimize condensation within the brick wall.

By incorporating an all-electric, high-efficiency VRF system and energy-efficient lighting and 
ventilation units, operational carbon was significantly reduced. The building is projected to have 
an annual gross electricity use of 2,024,213.36 kBtu/yr with 28.5% of the building’s annual 
energy generated by an on-site PV array for a net annual energy usage of 1,553,725.85 kBtu/yr 
and an EUI of 30.95 kBtu/ft²/yr. The energy needs are also forward-thinking. A wire mold system 
was used in public workspaces, multi-use spaces, and art studios to minimize the need for future 
electrical work. On-site photovoltaic panels were designed to allow for future on-site battery 
energy storage. 
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QUESTIONS TO ASK IN BUILDING REUSE AND KEY TAKEAWAYS

1. �How can we ensure that the design accommodates the needs and aspirations of diverse 
community groups while preserving the historical and industrial character of the building?

	� LESSONS LEARNED: The Foundry’s program was developed in response to requests 
from community groups. The architect worked with the City of Cambridge and Cambridge 
Redevelopment Authority to lead large community meetings and monthly advisory committee 
meetings, and collaborated with neighborhood groups and local planning and development 
officials to solicit ideas and tailor. An advisory board was formed to reach out to houses of 
worship, workforce training programs, and schools, and artist Candy Chang held a community 
event called “I wish this was.” The final program was created after two years of research. 

2. �What strategies can we implement to enhance the building’s resilience and reduce its 
vulnerability to potential water damage?

	� LESSONS LEARNED: Balance the general recommendation to keep what exists with an 
evaluation of future hazards. Though the structure is outside of the 100-year floodplain, it 
is vulnerable to more intense flooding as a result of climate change. The team removed the 
underground parking garage and created a public plaza with robust stormwater runoff design. 
It doesn’t take a whole-building life cycle assessment to thoughtfully weigh risk vs. reward.

 
3. �How can we carefully evaluate and balance the retention of existing elements with the 

introduction of new energy-efficient systems?

	� LESSONS LEARNED: A VRF system was chosen to provide programmatic flexibility for future 
building use without installing new HVAC equipment. 

The Foundry 101 project is a remarkable example of how thoughtful architectural design can 
harmonize community needs, historical preservation, and sustainability. By strategically omitting 
the underground parking garage in favor of a shared plaza and implementing flood resilience 
measures, the design team demonstrated their commitment to enhancing the building’s 
adaptability to climate hazards while serving the community.

The retention of historical elements, such as the exposed wood roof decking and truss system and 
brick envelope, alongside the integration of high-performance windows and increased insulation, 
exemplifies how preservation and innovation can coexist harmoniously. With all-electric operation 
and on-site PV panels offsetting a significant portion of energy use, the project showcases the 
power of design to shape a thriving and sustainable community for generations to come.

Foundry 101, Exterior Post-renovation  |  Image credit: Anton Grassl courtesy of CambridgeSeven
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CASE STUDY: WAVELAND CIVIC CENTER 

Old Waveland Elementary School post-Hurricane Katrina in 2005, and after restoration in 2008.  
Image credit: unabridged Architecture

ARC HI TEC T: unabridged Architecture

B UILDING T YPE: Community Center and Cafe	

LOCAT ION : Waveland, MS 

AR E A : 7,575 sf 

YE AR B UILT (OR IGINAL ) : 1927

YE AR OF R E NOVAT ION : 2007 

E UI : 36.6 kBTU/sf/yr  

The Waveland Civic Center in Waveland, Mississippi, is a historic elementary school building that 
was renovated in 2007 to restore its functionality after over a decade of vacancy and to improve 
its resilience after being severely damaged by Hurricane Katrina. The project aimed to provide 
a versatile space for community activities while ensuring climate resilience to withstand future 
hazards. 

CLIMATE HAZARDS

Waveland, Mississippi, has historically faced various climate hazards, including:

	 1. �Hurricanes: The Gulf Coast region is vulnerable to hurricanes, leading to storm surge, wind 
damage, and flooding.

	 2. �Heavy rainfall: Intense rainfall associated with hurricanes and tropical storms can cause 
widespread flooding.

	 3. ��Storm surge: The low-lying coastal area is susceptible to storm surges, exacerbating 
flooding and erosion.
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The region is projected to face increased climate risks in the future:

	 1. �Intensified hurricanes: Climate change may lead to more intense hurricanes with greater 
potential for damage.

	 2. �Increased heavy rainfall events: More intense hurricanes and severe storms will come 
with more rain.

	 3. �Sea-level rise: Rising sea levels may amplify the impact of storm surges and increase  
coastal flooding.

ARCHITECT’S AGENCY

The architect played a significant role in advocating for the restoration of the Civic Center after 
Hurricane Katrina, ensuring that it would continue to serve as a community hub and gathering 
place, particularly for vulnerable populations impacted by the hurricane. 

	 1. �Advocacy for restoration: Despite doubts from the city and budget constraints, the 
architect succeeded in protecting and restoring this building. It was the first building 
completed after Hurricane Katrina and was used for city council meetings and other 
gatherings until other structures were replaced. 

	 2. �Climate-resilient improvements: The project team prioritized climate-resilient design, 
contributing to the community’s resilience and equitable recovery.

	 3. �Integration of HVAC and energy performance: The rehabilitation introduced HVAC 
systems and accessibility improvements for the first time, allowing the building to be 
occupied after decades of disuse. 

This building was significantly damaged by Hurricane Katrina due to 1980s-era modifications 
that had increased the surface area but had not improved the wall strength. After the storm, the 
City Council questioned the need to restore the building, saying, “It is cheaper to tear it down 
and build a metal building.” Luckily, grant funding became available to restore the building, which 
was the only structure left standing on the city’s historic main street. The architect advocated 
for the restoration along with many community members. Funding for the restoration came from 
insurance proceeds supplemented by grants from the Mississippi Department of Archives and 
History and the Mississippi Development Authority. 

The restoration involved critical improvements to withstand new climate challenges, including a 
deeper anti-scour foundation to act against storm surge, lateral bracing to stabilize unreinforced 
masonry from high winds, restoration of the flat roof and a reinforced parapet wall, and flood 
prevention measures at the site and beneath the structure. The new service life is expected to 
match the pre-renovation service life—80–100 years. 

Brick salvage  |  Image credit: unabridged Architecture
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Original wood and bricks were carefully salvaged for reuse, and new materials were sourced 
to match the profile and characteristics of the historic materials. The brick wing that collapsed 
due to the storm was painstakingly separated from other debris, cleaned, and reused. “New” 
bricks—12,000 of them—were carefully chosen from a historic source to match color, dimension, 
and hardness. Approximately 80% of what remained in the building after the storm was retained 
and reused.

WCC front door  |  Image credit: unabridged Architecture

Interior finishes, such as wood flooring and beaded board—any lumber over 24 inches of good 
material—were salvaged. The community was consulted in multiple public meetings, resulting in 
saving an interior mural painted by Boy Scouts in the 1960s. The Hurricane Katrina waterline was 
painted on the interior walls, and the building hosts the Ground Zero Hurricane Museum, which 
has permanent exhibits about the storm and recovery.

While not designated as a critical facility, the building’s location on relatively higher ground allows 
it to be used for public gatherings during the recovery phase of future storms. The introduction 
of HVAC systems allowed the building to be occupied after decades of disuse. Recent measured 
EUI was 36.6 kBtu/sf/yr. It’s an all-electric building, which was one condition of funding for the 
historic restoration. 

Civic Center multi-purpose room  |  Image credit: unabridged Architecture
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QUESTIONS TO ASK IN BUILDING REUSE AND KEY TAKEAWAYS

1. �How can we prioritize design and construction methods that ensure the building can withstand 
potential future hazards and contribute to the community’s resilience?

	� LESSONS LEARNED: Think structurally and holistically when making repairs. Prior 
renovations removed the parapet wall and added surface area to an unbraced wall, causing it 
to fail against high winds. Anticipating similar and stronger future hazards, the architect rebuilt 
the brick façade with lateral bracing.  

2. �What strategies can be implemented to salvage and reuse as much of the original building 
materials as possible, maintaining historical and cultural significance while reducing waste and 
embodied carbon?

�	� LESSONS LEARNED: By thinking thoughtfully about salvage and reuse, and spending time 
sourcing existing materials, embodied carbon can be saved, even if you don’t have the time or 
resources to do a whole-building life cycle assessment. Use what’s on-site, use what’s close, 
replace as little as possible, and think structurally. Reinforce where needed. Work, time, and 
destruction could have been saved or minimized if the prior envelope renovations included  
proper structural reinforcement.  

3. �How can we actively engage with local community stakeholders to advocate for the restoration  
of a building, ensuring it continues to serve the community even after significant damage from 
natural disasters?

	� LESSONS LEARNED: Advocate and invite others in. In this case, the architect cared for  
this building and preservation deeply and found a community standing with them to restore  
the building.

The historic Civic Center’s restoration stands as a testament to climate-resilient design and 
community advocacy. Despite significant damage caused by Hurricane Katrina, the building was 
preserved because the architect played a vital role in making it happen. Key takeaways from 
this project include prioritizing design and construction methods to withstand potential future 
hazards, salvaging and reusing original building materials to maintain historical significance, and 
actively engaging the community to advocate for restoration.

The restored Civic Center now serves as an anchor for the revitalized Coleman Avenue, 
symbolizing community resilience. With climate risks projected to intensify in the future, lessons 
from this project offer valuable insights for rehabilitation projects in vulnerable areas. The 
project’s success exemplifies how community involvement and a focus on heritage can contribute 
to the recovery and resilience of communities facing climate-related challenges.
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CASE STUDY: BELOIT POWER PLANT TO STUDENT UNION

Beloit College Powerhouse Exterior  |  Image credit: © Tom Harris. Courtesy Studio Gang

ARC HI TEC T: Studio Gang

B UILDING T YPE: Student Union, Athletic and Wellness Center

LOCAT ION : Beloit, WI 

AR E A : 120,000 sf (including new Field House addition)

YE AR B UILT (OR IGINAL ) : 1908 

YE AR OF R E NOVAT ION : 2020 

PE UI : 33 kBTU/sf/yr vs. 62 kBtu/sf/yr baseline

E MBODIE D CAR BON : 171 kgCO2e/m2 vs. 371 kgCO2e/m2 if new (structure + envelope)

 
Once a coal-burning power plant, the Beloit College Powerhouse now serves as a student union 
centered on recreation and wellness, along with spaces for community events from farmers 
markets to public lectures. Located on the Rock River, the design retains and adapts the power 
plant’s historic structures and industrial equipment, constructed between 1908-1947, and adds 
a new field house. Together with strategies to reduce operational carbon emissions, the design 
also anticipates changes to the use of the building through flexible spaces that can accommodate 
different programs and systems that maximize access for maintenance and future retrofits. 

CLIMATE HAZARDS:

Beloit, Wisconsin, has historically faced various climate hazards, including:

	 1. Extreme Cold: The region experiences extreme temperature variations, with cold winters. 

	 2. Extreme Heat: The region also experiences hot summers. 

The region is projected to face increased climate risks in the future:

	 1. �Increased Heat: Climate change may result in higher average temperatures and more 
frequent heatwaves.

	 2. �Flood: Changes in precipitation patterns, including more intense rain events, pose  
flooding risks.
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ARCHITECT’S AGENCY:

Faced with the unique challenges of preserving and adapting the existing structure, the team 
leveraged the following skills, tools, and approaches:

	 1. �Quantifying impact: The team emphasized the importance of data-based carbon emissions 
analysis and encouraged a long-term perspective regarding both embodied and operational 
emissions.  

	 2. �Holistic approach to reducing emmissions: The carbon savings of material reuse can be 
overshadowed in regions with an inefficient and environmentally unfriendly electricity grid. 
The design team implemented significant reductions in energy use through river thermal 
heat exchange, heat pumps and radiant systems.

	 3. �Reveal gracious scale of industrial architecture: Originally designed for machines, the 
Powerhouse was well suited to the new program after strategic modifications. The resulting 
spaces were more generous and richly detailed than what would have been possible in a new 
building with similar budget.

The Powerhouse underwent creative reuse and reprogramming to accommodate new spaces 
that worked with the industrial scale of the original structure. The resulting spaces became more 
spacious and cost-effective compared to building from scratch. Historic catwalks and machinery 
were replaced with new steel beams and entirely new floors. In this manner, tens of thousands of 
square feet were added to the existing structure—in essence, using the historic steel structure as 
an armature to house new floors and programs. 

Instances where large program elements were required, the design team creatively modified the 
Powerhouse’s structure to fit within the existing building footprint. 

Beloit College Powerhouse Turbine Hall  |  Image credit: © Tom Harris. Courtesy Studio Gang
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Innovative structural solutions, such as removing a major divider wall and inserting an overhead 
steel truss, allowed for a regulation-sized pool and a running track within the building’s footprint. 
By reusing the existing structure and enclosure, the project achieved a 53.9% emissions 
reduction in emissions compared to a building constructed entirely of new materials. The 
embodied carbon of new materials (structure, interiors, and mechanical system) for retrofit and 
addition was 171 kgCO2e/ m2 compared to 371 kgCO2e/m2 for new construction of this building. 

The Field House addition is a versatile facility that serves as an athletic practice space for  
college sports teams while also hosting various programs, including events, community 
gatherings, and serving as an “outdoor” classroom. The building’s proximity to the Rock River 
necessitated planning for water infiltration. A network of drain tile and sumps, surrounded by 
18 inches of loose gravel, accommodates rather than seals off and resists periodic infiltration. 
Glass garage doors divide student meeting rooms, allowing for flexible space expansion. Exposed 
mechanical ducts and piping facilitate maintenance and future retrofits, minimizing the need for 
extensive modifications.

The new Pool House presented special mechanical challenges, including controlling for very high 
ambient moisture levels and maintaining high air quality. An air return at the level of the pool deck 
reduces chlorine-saturated air stagnation, thereby improving the air quality for the swimmers.  

Mechanical systems were designed for longevity and adaptability, with the potential to phase out 
back-up boilers, gas domestic hot water heaters, and dedicated outdoor air system DOAS units 
in the future as technology advances. The project incorporated river water for low energy heat 
exchange, which was permitted thanks to the original use of the building. The team also included 
other innovations such as heat pumps (a first in the region) and radiant panel/floor systems, 
which (with the DOAS) provide conditioned air directly to occupants. 

In order to secure historical tax credits for historic structures, the building’s enclosure had to 
remain largely undisturbed. To that end, the building’s roof received a minimum of 6-inch polyiso 
insulation and TPO or EPDM roofing. The triple-wythe brick walls were repointed and repaired. 
Insulation was added to the interior of the walls along with gwb finish. Historic windows fit for 
reuse were repaired and “storm windows” were added to meet performance goals. 

Due to the rigorous amounts of thermal mass and retrofitted insulation, the project is well 
situated for stable internal temperatures despite increasing extreme weather events. The building 
pEUI is 33 kBtu/sf/yr, which represents a 53.2% reduction from baseline (62 kBtu/sf/yr). 

Beloit College Powerhouse Design Concept diagram |  Image credit: Studio Gang
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The team evaluated operational carbon over a 60-year lifespan with grid-specific 
emissions and a grid cleaning scenario. With the existing grid, 60-year emissions total 
to approximately 42,000,000 kgCO2e, with operational carbon representing 98% 
of overall emissions. With grid cleaning, that sum drops dramatically to approximately 
15,000,000 kgCO2e, and with operational carbon representing 89% of 60-year 
emissions. While the embodied carbon savings are important now, for adaptation 
and long-term climate mitigation, a clean grid is necessary and critical.

QUESTIONS TO ASK IN BUILDING REUSE AND KEY TAKEAWAYS:

1. �How can we creatively leverage the inherent flexibility of existing industrial-scale structures to 
accommodate new programmatic needs without expanding the building’s physical footprint?

	� LESSONS LEARNED:  Look at volume and structure together. Volumes of existing spaces 
may offer flexibility in solving for new space uses and offer opportunities for sectionally 
interconnected social spaces.

 
2. �What structural modifications and innovative solutions can we implement to integrate large,  

fixed—program elements while preserving the historical integrity of existing structures?

	� LESSONS LEARNED: Structural elements can be removed and replaced to create more 
flexible spaces. A major divider wall in this project was replaced with a new, overhead structural 
truss, uniting two spaces into one to accommodate larger program elements. 

 
3. �How can we strategically design mechanical systems to address unique challenges, while 

ensuring adaptability for future technology advancements and reduced fossil-fuel use?

	� LESSONS LEARNED: Even if a building’s systems are high-performing, the local grid mix   will 
determine the overall emissions footprint in the long-term. The benefits of material reuse can 
be overshadowed by an emissions-intensive grid. Evaluate embodied and operational carbon 
together to make informed design and performance decisions. The positive climate impact of 
investment in PV systems comes into greater focus once the source energy profile is known.

 
The Beloit College Powerhouse leveraged the inherent flexibility of the existing industrial-scale 
structure to accommodate new programmatic needs without expanding the building’s footprint, 
resulting in a cost-effective use of space. 

Addressing the challenge of improving energy efficiency in the face of future extreme 
temperatures— especially extreme cold—the team found a balance between bolstered envelope 
R-value, mechanical systems required for day-to-day use, and back-up equipment to ensure 
occupant comfort and safety. Through the adaptive reuse of the historic structure, the design 
extends its usable service life, enhancing the student and local riverfront experience for 
generations to come. 
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CASE STUDY: LWCC HEADQUARTERS, BATON ROUGE, LA

LWCC Renovation Stairway |  Image credit: Michael Mantese

ARCHITECT: EskewDumezRipple 

BUILDING TYPE: Office 	

LOCATION: Baton Rouge, LA 

AREA: 130,467 sf 

YEAR BUILT (ORIGINAL): 1984 

YEAR OF RENOVATION: 2020 

PEUI: 32kBTU/sf/yr vs. 93kBTU/sf/yr before renovation

EMBODIED CARBON: 48 kgCO2e/m2 vs. 500 kgCO2e/m2 average new  

The LWCC office building renovation aimed to transform an unremarkable existing building into 
a model of sustainable design, addressing energy efficiency, thermal performance, and occupant 
comfort. It presents a design opportunity through necessary mechanical system upgrades that 
improve efficiency and space quality. The project demonstrates that “unloved,” non-historic 
buildings have value, offer architectural and design opportunity, and can improve both the 
environment for building occupants and energy performance, all while reducing overall carbon 
emissions impact through building reuse. 

LWCC Renovation Entrance Image credit: Sara Essex Bradley LWCC Renovation Stairway 2 | Image credit: Sara Essex Bradley
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CLIMATE HAZARDS

Baton Rouge has historically faced various climate hazards, including:

	 1. �Hurricanes and storms: The region is susceptible to hurricanes and severe storms, leading 
to building damage and disruptions.

	 2. �Flooding: Low-lying areas in Baton Rouge experience flooding during heavy rainfall and  
storm events.

	 3. �Extreme heat events: The region faces high temperatures during the summer months, 
leading to increased energy demands for cooling and potential risks to occupant comfort.

In Louisiana, the most acute anticipated effects of climate change are more intense and severe 
versions of the historic regional hazards:

	 1. �More intense hurricanes: Climate change may lead to more frequent and intense 
hurricanes, exacerbating storm-related damages.

	 2. �Flooding and sea-level rise: Rising sea levels may increase the risk of coastal flooding, 
affecting low-lying areas and infrastructure.

	 3. �More and hotter heatwaves: The region is likely to experience more prolonged and intense 
heatwaves, impacting human health and energy demand.

ARCHITECT’S AGENCY

The design team’s agency played a crucial role in recognizing the potential of the renovation 
project and creating a more holistic and sustainable building through these key actions:

	 1. �Identifying design opportunities: Leveraging the mechanical systems upgrade, the 
architects integrated energy-efficient and climate-resilient strategies into the building’s 
design, enhancing the overall interior environment and occupant well-being.

	 2. �Promoting health and wellness: By creating continuous connections between floors 
through selective demolition and incorporating inviting stairs, the architects encouraged 
physical activity for those who are able and interaction among occupants while prioritizing 
indoor air quality, daylighting, and thermal control for enhanced comfort and health.

	 3. �Emphasizing building reuse: Demonstrating the value of non-historic 
buildings, the design team preserved and reused the existing envelope and 
windows, significantly reducing waste and embodied carbon, highlighting 
the potential of sustainable building reuse with minimal intervention.

The existing facility, built in 1984, consisted of eight isolated floors with private offices and 
high-wall cubicles, leading to frequent thermal comfort complaints.

LWCC Renovation Office Space Pre  |  Image credit, left: EskewDumezRipple  |  Image credit, right: Sara Essex Bradley
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The design team introduced peer-reviewed research on air quality to bring thermal comfort, daylight, 
and physical activity into the project, recognizing their impact on worker health and productivity. 

The project reused the existing envelope and windows and found that changing the internal office 
layout and zoning provided better thermal comfort. As a result, the embodied carbon associated 
with the renovation is extremely low—nearly a 90% savings compared to new construction! 
The embodied carbon of the new materials (structure; interiors partitions, not including flexible 
furnishing; and mechanical system) for the retrofit and addition was 48 kgCO2e/m2 compared to 
500 kgCO2e/m2 for average new construction of office buildings.

Figure 1: Diagram of the floorplan shifts 
that allow for more daylight penetration 
and provide a buffer in workspace from 

“drafty” windows for thermal comfort 
throughout the circulation corridor, which 
also encourages occupant movement.  

Figure 2: The reimagined facility inserts 
a succession of double-height, daylight-
filled social spaces with inviting stairs 
that draw employees up and through  
the building.

The project’s big architectural move involved surgical interventions via selective demolition to create 
a continuous connection between floors. Vertical connections between separate departments one 
floor above or below each other allow users to easily access staff and resources while promoting 
exercise and movement. 

The project achieved a dual benefit of improved thermal comfort and enhanced physical activity, 
contributing to a separate key goal of improving occupant health and well-being. The big takeaway is 
that strategies that improve occupant health also lead to substantial energy savings, benefiting both 
people and the planet. 

Carbon emissions were reduced from 22.38 lbs CO2e/sf/yr to 7 lbs CO2e/sf/yr post-retrofit, largely 
attributed to the variable refrigerant flow system and lighting upgrades. This cut operational carbon 
to a third of its pre-retrofit levels—from 93/kBTU/sf/yr to 32 kBTU/sf/yr. That translates to pre-
retrofit emissions of approximately 3,000,000 lbs CO2e/yr to approximately 900,000 lbs  
CO2e/yr today.
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QUESTIONS TO ASK IN BUILDING REUSE AND KEY TAKEAWAYS

1. How can we improve energy efficiency while ensuring occupant comfort?

	� LESSONS LEARNED: If you are employing an energy efficiency measure not yet in 
widespread use in the region, schedule focused training on that measure with your installers 
and building operators. 

2. �How can we leverage building reuse to minimize embodied carbon and promote sustainability 
while preserving the existing envelope and windows? 

	� LESSONS LEARNED: Keep what you can, and evaluate your options. Replacing glazing yields 
little to no energy savings itself and may not be worth the embodied carbon. 

3. �How can we prioritize occupant health with inviting spaces and daylight integration within a 
building that had none?

	� LESSONS LEARNED: Look at layout creatively. Perimeter spaces with access to daylight and 
views can become public spaces. Creating multistory atria volumes where there were none 
created more shared spaces and daylight penetration. 

The LWCC office building renovation exemplifies a comprehensive and data-driven approach to 
sustainable design. By addressing energy efficiency, thermal performance, and occupant comfort 
together, the project showcases building reuse as a model for climate mitigation. 

By prioritizing occupant well-being, reducing carbon emissions, and integrating health initiatives, 
the project achieved remarkable improvements through thoughtful architectural agency. As 
climate risks evolve, this case study provides valuable insights for future building reuse endeavors 
that emphasize sustainability, energy efficiency, and occupant well-being.

LWCC Renovation Common Area  |  Image credit: Michael Mantese 
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CASE STUDY: CUSTOM BLOCKS 

Custom Blocks  |  Image credit: Lincoln Barbour

ARC HI TEC T: Mahlum     

B UILDING T YPE: Office 	

LOCAT ION : Portland, OR 

AR E A : 7,341 sf 

YE AR B UILT (OR IGINAL ) : 1940s

YE AR OF R E NOVAT ION : 2019 

PE UI : mEUI: 31 kBTU/sf/yr

E MBODIE D CAR BON : 109 kgCO2e/m2 vs. 500 kgCO2e/m2 average new 

The renovation of an 80-year-old industrial building in Portland’s Central Eastside neighborhood 
resulted in Portland, Oregon’s first Living Building Challenge (LBC)–certified project: It 
successfully achieved the rigorous Materials Petal, in addition to the Place, Equity, and Beauty 
Petals, and fulfilled imperatives for the Health and Happiness Petals. 

Custom Blocks  |  Image credit: Lincoln Barbour
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CLIMATE HAZARDS

The Pacific Northwest has historically faced various climate hazards, including:

	 1. �Wildfires: Oregon has historically experienced wildfires in the summer months due to 
lightning or human-caused combustion combined with its dry climate, extensive forests, 
and limited summer rain.

	 2. �Drought: Precipitation has had a predictable temporal pattern with summer months prone 
to droughts.

	 3. �Flooding: During the cool rainy season, from fall to early spring, floods are common in 
Oregon. River flooding is the most common type in the region, although flash flooding has 
historically occurred as well.

In Portland, the most acute anticipated effects of climate change are more intense and severe 
versions of the historic regional hazards:

	 1. �Heatwaves: The region is likely to experience more prolonged and intense heatwaves, 
impacting human health and increasing demand for mechanical cooling, a rarity in the region 
until recently. This increased energy demand is expected to cause power outages. Droughts 
increase the risk of power outages because of the region’s reliance on hydro power.

	 2. �Increased wildfires and drought: The reduction in summer precipitation has expanded 
the period when wildfires occur. Summer drought combined with the elevated nighttime 
temperature heightens the intensity and spread of wildfires.

	 3. �Flooding and landslides: More precipitation is now falling as rain instead of snow. 
Snowpack loss, earlier snowmelt, increased winter rainfall, and more extreme precipitation 
are expected to increase due to climate change. This will lead to increased flooding risk and 
landslides from rain events.

ARCHITECT’S AGENCY

The design team’s agency played a crucial role in recognizing the potential of the renovation 
project and creating a more holistic and sustainable building through these key actions:

4. Promoting health and wellness: All products and materials that went into the studio met 
the strict LBC Red List requirements. Additionally, it was imperative that equitable work 
environments were provided for all, including equal access to daylight and views. The result 
is a daylit studio with exemplary indoor air quality, which is a great source of pride and 
satisfaction, confirmed by post-occupancy evaluations from staff. 

5. Building reuse as a design opportunity: Restoring an old industrial building goes beyond 
the carbon footprint savings; it carries forward neighborhood history and adds distinct beauty 
and character to the quality of the space. 

6.� Reducing waste: The new studio accommodates an expanded program within the same 
overall square footage as the previous office by inverting the proportion of individual and 
collaboration spaces. Utilizing salvaged materials and furniture was an important driver in 
reducing first costs and embodied carbon. Superfluous finishes were eliminated wherever 
possible. The design prioritizes materials that perform multiple functions; for example, 
perforated gypsum wall board provides acoustic control and ceiling finish; original concrete 
floors are patched and polished; and exposed timber structure remains untouched.
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3. �Water conservation through material selection: As a tenant improvement project, 
the design team went beyond the obvious indoor potable water conservation strategies. 
Reaching further, product selection criteria included reduced embodied water used during 
the manufacturing process. For example, the selected gypsum wallboard consumes 25% less 
water during production than competing brands. This equated to a savings of 7,837 gallons of 
water, or 4,898 toilet flushes.

The commitment to International Living Future Institute (ILFI) as a Petal-Certified project 
drove all major and minor design decisions. The design team recognized that conducting deep 
materials research in-house would reap benefits for future projects, and transparency and market 
transformation were major drivers for the design process. 

The Custom Blocks Studio achieved net zero embodied carbon using a three-pronged approach. 
First, the team established an early carbon budget with the Build Carbon Neutral calculator. Then, 
in addition to vetting products for material health, the team also performed a whole building 
life cycle assessment (WBLCA) focused on improving materials with traditionally high global 
warming impacts. By reviewing Environmental Product Declarations (EPDs) submitted during 
construction, the team further calibrated the carbon footprint analysis, optimizing reductions for 
installed products based on reduced global warming potential (GWP) and volume of greenhouse 
gas emissions. Finally, the firm purchased carbon offsets to reduce the project’s total GWP. 
Additionally, more than 50% of all the materials were sourced within 500 km of the project site. 
And 100% of the wood in the project is either salvaged or Forest Stewardship Council (FSC) 
certified.

Mahlum, a JUST-labeled organization with the goal of connecting with their our community, their 
1,000 sf community space serves as the living room, dining room, and kitchen for staff, as well as 
a resource offered to nonprofit organizations to host events on evenings and weekends. 

Custom Blocks  |  Image credit: Lincoln Barbour
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QUESTIONS TO ASK IN BUILDING REUSE AND KEY TAKEAWAYS

1. What is it made of and how did it get here?

	� LESSONS LEARNED: We still use new materials in existing buildings. Simple materials that 
provide multiple benefits were prioritized. Over 350 products were vetted using the LBC Red 
List. Wood products were either FSC certified or salvaged. The team optimized specifications 
for materials with traditionally high climate (GWP) impact. All wet-applied products were vetted 
for their VOC content. Once all of these primary criteria were met, the team selected products 
with manufacturing locations closest to the project site. 

2. How can we design waste out of our projects? 

	� LESSONS LEARNED: Two existing windows at the new entrance were designed to be reused 
as interior relites. However, during demolition, that salvage was not feasible, so the project 
team pivoted and instead recovered those two existing windows for the owner’s on-site “attic 
stock” to be used for future maintenance.

3. How can we prioritize equitable daylight access?

	� LESSONS LEARNED: Democratize daylight as a resource. Group areas that do not need 
daylight at the building core, and locate community spaces around one contiguous daylit space 
to provide equitable access to daylight.  

The historic 1940s shop building had already seen over 75 years of industrial service before 
the Custom Blocks Studio project opened in 2019. The current building is expected to last an 
additional 50–100 years, so the team worked diligently to respect building core elements and 
services that the owner will need to upgrade in the future. This approach minimizes potential 
interruptions to future tenants and values the history of the structure.

Achieving the studio’s ambitious sustainable design goals and Living Building Challenge 
certification was only possible with the unrelenting support of community partners, AIA resources, 
and research shared by professional organizations. Hearing from professionals who are willing to 
share what they have learned was motivating to the design team. To carry this torch forward, a 
20-minute video about the new studio was created in 2020 to share the team’s knowledge and 
lessons. This video has since been shared at multiple conferences, locally and internationally. 

Custom Blocks  |  Image credit: Lincoln Barbour Custom Blocks  |  Image credit: Lincoln Barbour
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CASE STUDY: THE PACKING HOUSE, CAMBRIDGE, MARYLAND

The Packing House Exterior  |  Image credit: Patrick Ross Photography

ARC HI TEC T: Quinn Evans

B UILDING T YPE: Commercial Mixed Use 	

LOCAT ION : Cambridge, MD

AR E A : 60,000 sf 

YE AR B UILT (OR IGINAL ) : 1920

YE AR OF R E NOVAT ION : 2021 

PE UI : 156 VS 199 ZEROTOOL BASELINE 

E MBODIE D CAR BON : 46 KG CO2E/SF  

The Packing House, the historic Phillips Packing Company, Factory F, building in Cambridge, 
Maryland, has been vacant and uncared for since the 1960s. Cross Street Partners, a vertically 
integrated real estate company focused on creating vibrant, mixed-use spaces that foster 
innovation and help rebuild communities, envisioned a new life for the building. Recognizing the 
food packing, agriculture, and aquaculture history of the region, the project was reimagined to 
support and grow economic opportunity and tourism tied to these industries.

CLIMATE HAZARDS

Cambridge, Maryland, is situated along the Chesapeake Bay, making it vulnerable to various 
historical climate hazards, including:

	 1. �Sea-level rise: Coastal areas like Cambridge have historically faced risks from rising sea 
levels, leading to inundation, erosion, and saltwater intrusion.

	 2. �Extreme weather events: The region has historically experienced extreme weather 
events, including heavy rainfall and heat waves, which have caused flooding, property 
damage, and disruptions to infrastructure and agriculture.

Design for 
resources

Design for 
change

Design for 
equitable  
communities

Design for 
well-being
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Climate change is expected to exacerbate these hazards, increasing their frequency and intensity, 
posing significant challenges to the region’s resilience.

	 1. �Intensified sea-level rise: Climate change is projected to increase sea-level rise, leading 
to more frequent and intense flooding and inundation events.

	 2. �More frequent and severe extreme weather events: Climate change is projected to 
increase the frequency and severity of extreme weather events, leading to more frequent 
and intense heavy rainfall events and heatwaves, and possibly more frequent hurricanes in 
an area that was historically at moderate risk for hurricanes.

ARCHITECT’S AGENCY

The architects played a crucial role in realizing the vision of The Packing House as a catalyst for 
community resilience and economic revitalization. Their expertise in adaptive reuse, sustainable 
design, and community engagement was instrumental in the project’s success.

	 1. �Adaptive reuse vision: The architects recognized the potential of the vacant industrial 
building, envisioning its transformation into a vibrant mixed-use space that would breathe 
new life into the surrounding neighborhood. 

	 2. �Sustainable design leadership: The architects championed sustainable design principles, 
incorporating energy-efficient measures, utilizing locally sourced and recycled materials, 
and implementing green infrastructure solutions.

	 3. �Community engagement facilitation: The architects and developers fostered open 
communication and collaboration with the community, conducting public meetings, 
incorporating local input, and ensuring that The Packing House truly reflected the needs 
and aspirations of Cambridge residents.

The transformative redevelopment of The Packing House stands as a testament to the power of 
community-driven, climate-resilient development. From its inception, the project was guided by a 
vision of equity and inclusion, ensuring that the benefits of revitalization extended to all members 
of the community.

The Packing House Event Space | Image credit: Patrick Ross Photography
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The development team at Cross Street Partners recognized the importance of creating a space 
that was accessible and welcoming to all. The architects incorporated design elements that 
prioritized equitable access to daylight, ensuring that all residents and visitors could enjoy the 
benefits of natural light. With its blend of commercial, light industrial, and restaurant space the 
building fosters a sense of community and belonging for people from all walks of life.

Beyond its physical design, The Packing House also promotes equity through its operational 
practices. The project’s tenants support local food business through Four Eleven Kitchen, a 
shared kitchen facility, and the Merge workspace tenant provides opportunities for entrepreneurs 
and small businesses to thrive. The incubator kitchen and commercial spaces provide affordable 
access to resources and facilities for food-based businesses, further leveling the playing field and 
promoting economic empowerment.

The Packing House’s success highlights the importance of equity in community revitalization 
projects. By prioritizing accessibility, inclusivity, and economic empowerment, the project 
has created a space that benefits all members of the Cambridge community. The architects 
fostered open communication and collaboration with residents, conducting public meetings and 
incorporating local input. This inclusive approach ensured that The Packing House aligns with the 
needs and aspirations of the Cambridge community.

The Packing House Hall Space  |  Image credit: Patrick Ross Photography
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QUESTIONS TO ASK IN BUILDING REUSE AND KEY TAKEAWAYS 

1. �How can we revitalize underutilized spaces and foster economic growth while ensuring 
resilience to climate change impacts?

	� LESSONS LEARNED: Revitalizing underutilized spaces like The Packing House can 
contribute to economic growth by attracting businesses, creating jobs, and enhancing the 
overall vibrancy of the community.

2. �How can we create mixed-use spaces that promote community engagement, celebrate local 
heritage, and support sustainable food systems?

	� LESSONS LEARNED: Cross Street Partners actively sought input from residents throughout 
the planning and design process, ensuring that The Packing House truly reflected the 
Cambridge community’s needs and aspirations. This inclusive approach fostered a sense of 
ownership and pride among residents, further strengthening the project’s equitable foundation. 
Additionally, the project’s emphasis on local food initiatives and its incorporation of a shared 
kitchen and commercial spaces promote sustainable food practices and strengthen the local 
food system.

3. �How can we incorporate sustainable design principles and adaptive reuse strategies to 
minimize environmental impact and enhance long-term resilience?

	� LESSONS LEARNED: Adaptive reuse of existing structures, as demonstrated by The Packing 
House, can significantly reduce the environmental impact associated with new construction 
by minimizing waste and embodied carbon. Furthermore, incorporating sustainable design 
principles, such as energy efficiency measures, the use of locally sourced and recycled 
materials, and the implementation of green infrastructure solutions, can further reduce the 
project’s environmental footprint and enhance long-term resilience to climate change. 

The revitalized Packing House has emerged as a thriving hub for the Cambridge community, 
fostering economic development, promoting local food initiatives, and contributing to the city’s 
resilience. By embracing adaptive reuse, sustainable design, and community engagement, the 
project stands as a model for how to transform underutilized spaces into vibrant, sustainable, and 
resilient community resources in the face of climate change.



> G LO S S A RY



T O DAY ’ S  B U I L D I N G S  FO R  T O M O R R O W :  GUIDE TO BUILDING REUSE FOR CLIMATE ACTION  >  G LO S S A RY  >  5 5

G LO S S A RY

Climate change adaptation (accommodating needs throughout service life): The 
adjustment in natural or human systems in response to actual or expected climatic stimuli or their 
effects, which moderates harm or exploits beneficial opportunities. [IPCC] 

Climate change mitigation (reducing negative impact): The lessening of the potential adverse 
impacts of physical hazards (including those that are human-induced) through actions that 
reduce hazard, exposure, and vulnerability. [IPCC] 

Climate justice: Where the burdens of climate change and the responsibilities to deal with it 
are borne fairly and equitably, acknowledging that up until now the benefits associated with 
the activities that have led to climate change have accrued disproportionately to the older and 
wealthier while the burdens have been borne disproportionately by women, the poor, people of 
color, and future generations. [United Nations Sustainable Development] 

Equity: The state in which everyone is treated in a manner that results in equal opportunity and 
access, according to their individual needs. Equity requires identifying and eliminating barriers 
that have disadvantaged nondominant identity groups to assure that all individuals receive 
equitable treatment, opportunity, and advancement regardless of identity; it also means that 
some individuals will need more support (due to existing structural barriers) than others.  
[AIA Guides for Equitable Practice] 

Global warming potential (GWP): A measure of how a given gas in the atmosphere helps hold 
heat over a given period of time. While most are familiar with carbon dioxide (CO2) as a global 
warming gas, some gases emitted in smaller quantities, such as methane, some refrigerants, and 
some blowing agents used in spray insulation, pound for pound, have a higher GWP than CO2. 
[EPA] 

Healthy: Supporting health and well-being for building occupants and the surrounding 
community, through design that inclusively promotes activity within the building and active 
transportation options, an indoor environment (air, temperature, light, and sound) conducive to 
health, connecting occupants with place and with nature, and avoiding materials that pose health 
hazards.  
[AIA Framework for Design Excellence] 

Resilience (inherent durability or flexibility): The ability of a system and its component parts 
to anticipate, absorb, accommodate, or recover from the effects of a hazardous event in a timely 
and efficient manner, including through ensuring the preservation, restoration, or improvement of 
its essential basic structures and functions. [IPCC] 

Sustainability: Design that seeks to avoid depletion of energy, water, and raw material resources; 
prevent environmental degradation caused by facility and infrastructure development over its 
life cycle; and create environments that are livable, comfortable, and safe and that promote 
productivity. [Architect’s Handbook of Professional Practice]

https://www.ipcc.ch/pdf/special-reports/srex/SREX-Annex_Glossary.pdf
https://www.ipcc.ch/pdf/special-reports/srex/SREX-Annex_Glossary.pdf
https://www.un.org/sustainabledevelopment/blog/2019/05/climate-justice/
https://www.aia.org/resources/6246433-guides-for-equitable-practice
https://www.epa.gov/ghgemissions/understanding-global-warming-potentials
https://www.aia.org/resources/6077668-framework-for-design-excellence
https://www.ipcc.ch/pdf/special-reports/srex/SREX-Annex_Glossary.pdf
https://store.aia.org/products/architects-handbook-of-professional-practice-15th-edition?variant=28634405121
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•	 �The AIA Resilient Project Process Guide, developed through a collaborative effort of 
practitioners at firms across AIA, helps designers ask themselves the right questions at each 
phase of a project so that their finished buildings can respond well to shocks and stressors now 
and in the future.

•	 �Because the impacts of climate change fall disproportionately on poorer communities and 
communities of color, and because a disproportionate share of the building stock in greatest 
need of renewal is often in those same communities, the AIA Guides for Equitable Practice 
provide a wealth of useful resources. Many of these tools focus on improving equity within the 
practice of architecture, but Justice in the Built Environment looks at the ways we can pursue 
projects in ways that really meet the needs of the communities where they are located. 

•	 �The AIA Framework for Design Excellence is the organizing resource for sustainable, resilient, 
and inclusive design. The framework provides a wealth of tools, case studies, and simple 
recommendations to help you move your design work toward four key outcomes:

	> Zero carbon—helping reduce the contributions of buildings to climate change

	> Equitable—shaping projects in ways that reduce social inequities

	> Resilient—designing projects to support the ability of communities to come back after 
shocks and stresses, including those driven by climate change

	> Healthy—shaping projects in ways that promote the wellness of those who use buildings 
and those impacted by the production of building materials 

•	 �The Advanced Energy Design Guides by ASHRAE provide cost-effective approaches to achieve 
energy saving for the different project types.  

•	 �The AIA-CLF Embodied Carbon Toolkit for Architects provides a comprehensive resource for 
architects to take these issues further. 

•	 Renovate, Retrofit and Reuse Guide Prepare your firm to take advantage of the increasing   
number of retrofit projects with this guide uncovering the hidden economic, health, and 
environmental benefits in America’s existing building stock.

https://www.aia.org/resources/6512008-aia-resilience-project-process-guide?amp;amp
https://www.aia.org/resources/6246433-guides-for-equitable-practice
https://docs.google.com/forms/d/e/1FAIpQLSfHegB3yttfVc5v5Cj_p4uvTg3lCzDEL0xcoW7psSaXkas09A/viewform
https://www.aia.org/resources/6077668-framework-for-design-excellence
https://www.energy.gov/eere/buildings/advanced-energy-design-guides
https://www.aia.org/resource-center/aia-clf-embodied-carbon-toolkit-architects
https://www.aia.org/resource-center/renovate-retrofit-reuse
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